Combinatorics of the K-theory of Affine Grassmannians
نویسنده
چکیده
We introduce a family of tableaux that simultaneously generalizes the tableaux used to characterize Grothendieck polynomials and k-Schur functions. We prove that the polynomials drawn from these tableaux are the affine Grothendieck polynomials and k-K-Schur functions – Schubert representatives for the K-theory of affine Grassmannians and their dual in the nil Hecke ring. We prove a number of combinatorial properties including Pieri rules.
منابع مشابه
Affine Grassmannians and the Geometric Satake in Mixed Characteristic
We endow the set of lattices in Qp with a reasonable algebro-geometric structure. As a result, we prove the representability of affine Grassmannians and establish the geometric Satake correspondence in mixed characteristic. We also give an application of our theory to the study of Rapoport-Zink spaces.
متن کاملOn Quiver Varieties and Affine Grassmannians of Type A
We construct Nakajima’s quiver varieties of type A in terms of affine Grassmannians of type A. This gives a compactification of quiver varieties and a decomposition of affine Grassmannians into a disjoint union of quiver varieties. Consequently, singularities of quiver varieties, nilpotent orbits and affine Grassmannians are the same in type A. The construction also provides a geometric framewo...
متن کاملQuaternionic Grassmannians and Pontryagin Classes in Algebraic Geometry
The quaternionic Grassmannian HGr(r, n) is the affine open subscheme of the ordinary Grassmannian parametrizing those 2r-dimensional subspaces of a 2n-dimensional symplectic vector space on which the symplectic form is nondegenerate. In particular there is HP = HGr(1, n+1). For a symplectically oriented cohomology theory A, including oriented theories but also hermitian K-theory, Witt groups an...
متن کاملRadon Transforms on Affine Grassmannians
We develop an analytic approach to the Radon transform f̂(ζ) = ∫ τ⊂ζ f(τ), where f(τ) is a function on the affine Grassmann manifold G(n, k) of k-dimensional planes in Rn, and ζ is a k′-dimensional plane in the similar manifold G(n, k′), k′ > k. For f ∈ Lp(G(n, k)), we prove that this transform is finite almost everywhere on G(n, k′) if and only if 1 ≤ p < (n− k)/(k′− k), and obtain explicit inv...
متن کاملFinite field Nullstellensatz and Grassmannians
Let X C ]p'N be a projective variety defined over the Galois field GF(q). Denote by X(q) the set of GF(q)-rational points of X. Let k be an integer. We say that the pair (X, X(q)) satisfies the Finite Field Nullstellensatz of order k, (the FFN(k), for short), if every homogeneous form of degree :::; k on r N (J<) vanishing on X (q), vanishes on X (J<). Here, we prove the Finite Field Nullstelle...
متن کامل